Computation of planetary atmospheres by action mechanics using temperature gradients consistent with the virial theorem
INTERNATIONAL JOURNAL OF ENERGY and ENVIRONMENT, Volume 9, 2015, 129-146 https://www.naun.org/main/NAUN/energyenvironment/2015/a302011-078.pdf

Computations of atmospheric profiles based on action mechanics – coupled with a novel version of the virial theorem – question the current paradigm proposing a common mechanism of surface warming for all greenhouse gases. A development of the virial theorem suggests a new basis for establishing temperature gradients from equilibrium between molecular mechanics and gravity, modified by work-heat transfers resulting from convection or changes in molecular phase such as condensation or evaporation. The virial-action model suggests that recent global surface warming could have been caused by increased water vapor in the atmosphere affecting its morphology or variations in local frictional coefficients of the Earth’s urban and rural landscapes with compressive heating, rather than changes in greenhouse gas content alone. The virial-action hypothesis is logically tested in a computer model using data from Earth and other planets developing a novel algorithm for calculating atmospheric profiles recalling Lagrange’s calculus of variations and least action. All planets with an atmosphere are shown to exhibit surface warming compared to their black body temperatures, irrespective of greenhouse gas contents.